20 June 2023

The rather unknown case of **Technology Critical Elements (TCEs)** In surface waters

32 Gej

Ĝ₫

41 Nb 49 In

₅₂ Te

73 Ta

 \bigcirc

Ga]

Kim Gommans (UU & Deltares) Daniela Nordhoff (Universiteit Siegen/D)

Introduction

2 Studies on same topic:

- Research by students of Utrecht University on the transfer routes of TCEs
- Research by students of University Siegen on the monitoring of TCEs

Both: literature-based report from 2022; Cooperation with Deltares (Petra Krystek) and Rijkswaterstaat (Rob Berbee)

TCES What are they?

- Technology critical elements
- Around 40 elements, including REEs and platinum group elements
- Modern technology; e.g., solar panels, mobile phones
- Critical because:
 - Few suppliers
 - Shortage could lead to large economic impacts

UU Research: • Transfer routes • high-risk TCEs

- Socio-economic context
- Regulatory context
- High-risk TCEs
- Transfer to surface water

Socio-economic + // regulatory context

EU policy Targets for renewable energy Energy transition Growing Consumption of TCEs

Thresholds for 15 TCEs 3 substances of very high concern (ZZS stoffen): cobalt, beryllium, tellurium

• High-risk TCEs 柒

TCE

Lithium (Li)

Cobalt (Co)

Gadolinium (Gd)

Indium (In)

Lanthanum (La)

Explanation High concentration in Rhine

+ high anthropogenic input^[1]

- Considerably high concentration in Rhine + toxic in aquatic environment^[1,2]
- Rapid increase of concentrations in Rhine^[1,3]
- Significant anthropogenic input in Rhine + high concentration in sediment^[3]

Significant anthropogenic input in Rhine + high concentration in sediment^[3]

[1] De Jonge, J.A. et al., *Jaarrapport 2021 de Rijn* (2022)
 [2] ECHA, *Search for chemicals* (n.d.)
 [3] Klein, O., et al. *Science of The Total Environment* (2022)

 \bigcirc

Conclusion

- TCE consumption strongly related to energy transition
- Different routes to water bodies, probably only a small part of the whole picture
- Extending knowledge on toxicity and presence in Dutch surface waters will be useful to determine risks

Uni. Siegen research: Six rather Unknown TCEs

© 2006-2022 Tomtom, © Michelin

In the River Rhine and entering the Netherlands

· Cless studied TCEs *

TCE	Where are they mainly used?
Niobium	High strength low alloy steel (cars, pipelines, bridges, etc.) ^[1,2]
Tantalum	Powder in capacitors, and in metal products ^[1]
Gallium	Integrated circuits, optoelectronic devices and solar cells ^[1]
Indium	Flat panel displays, solders and photovoltaics ^[1,3]
Germaniun	Fiber optics systems, infrared optics ^[1]
Tellurium	Solar cells and theroelectric devices ^[1]

[1] Filella, M., et al. *Chemosphere* (2017)
[2] https://www.edisongroup.com/edison-explains/ferroniobium-and-hsla-steel/ (accessed 22/11/2022)
[3] Brun, N.R., et al. *Science of The Total Environment* (2016)

•Worldwide increase of production, without equally increasing monitoring!

Example: Worldwide gallium production Graphic adjusted from: Filella, M., et al. *Chemosphere* (2017) \bigcirc

Geoaccumulation along the river Rhine

 $I_{\text{geo}} = \log_2\left(\frac{X_{\text{i}}}{1.5 X_1}\right)$

Example: Content (mg/kg) of Nb in Rhine sediments and its geoaccumulation.

Map of German part of Rhine and definition of the different sampling sites

Klein, O., et al. Science of The Total Environment (2022)

Geoaccumulation along the Rhine

$$I_{\text{geo}} = \log_2\left(\frac{X_{\text{i}}}{1.5 X_1}\right)$$

Element	Increase along the Rhine	Rhine section
Niobium (Nb)	++	Whole river
Tantalum (Ta)	-	
Gallium (Ga)	+	Upper – middle
Indium (In)	+	Upper – middle
Germanium (Ge)	++	Whole river
Tellurium (Te)	+	Middle – Iower

Map of German part of Rhine and definition of the different sampling sites.

- No increase, + increase, ++ strong increase

Klein, O., et al. Science of The Total Environment (2022)

Passing Lobith and entering the Netherlands

- Only 3 of 6 LSTCEs are monitored (Ga, Nb and Te)
- Problem of possible interferences in the measurement
- Ga and Nb are mostly present attached to suspended solids, while Te is mostly dissolved in water
- Over the last 5 years, the concentration of all three elements decreased

Mean concentrations of Tellurium dissolved in water from 2017 to 2022 (September), filtered (0.45µm).

Conclusion

Sediment data

- Nb and Ge showed highest geoaccumulation index → should be observed carefully
- Geoaccumulation of Ga, In and Te also increased
- No accumulation seen for Ta
- → Main focus should lie in **sediment** analysis

Water data

• No significant increase over the past five years

 \cap

THANKS.

DO YOU HAVE ANY QUESTIONS?

This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik.